指标
Prisma Client 指标让您可以详细了解 Prisma Client 如何与您的数据库交互。您可以使用这些信息来帮助诊断应用程序的性能问题。
如果您想更详细地了解 Prisma Client 的性能,精确到单个操作级别,请参阅追踪。
关于指标
您可以将指标导出为 JSON 或 Prometheus 格式,并在控制台日志中查看,或将其集成到外部指标系统,例如 StatsD 或 Prometheus。如果您将其集成到外部指标系统,则可以查看指标数据随时间的变化。例如,您可以使用指标来帮助诊断应用程序的空闲连接和活动连接数量如何变化。
Prisma Client 提供以下指标
-
计数器(始终增加)
prisma_client_queries_total
:执行的 Prisma Client 查询总数。prisma_datasource_queries_total
:执行的数据源查询总数(关系型数据库中的 SQL 查询以及 MongoDB 中的命令)。prisma_datasource_queries_total
返回的值可能大于prisma_client_queries_total
,因为某些 Prisma Client 操作会创建多个查询。
prisma_pool_connections_closed_total
:关闭的连接池连接总数。prisma_pool_connections_opened_total
:当前打开的连接池连接数量。
-
计量器(可增加或减少)
prisma_client_queries_active
:当前活跃的 Prisma Client 查询数量。prisma_client_queries_wait
:当前正在等待连接的 Prisma Client 查询数量,因为所有连接都在使用中。prisma_pool_connections_busy
:当前正在使用的连接池连接数量。这些连接池连接当前正在执行数据源查询。prisma_pool_connections_idle
:当前未使用的连接池连接数量。这些连接池连接正在等待下一个数据源查询运行。prisma_pool_connections_open
:打开的连接池连接数量。
-
直方图(将指标数据分成一系列值;我们将集合中的每个容器称为“桶”)
prisma_client_queries_wait_histogram_ms
:所有 Prisma Client 查询等待连接池连接的时间,单位为毫秒 (ms)。prisma_client_queries_duration_histogram_ms
:所有执行的 Prisma Client 查询的执行时间,单位为毫秒 (ms)。这包括执行所有数据库查询所需的时间,以及进行所有数据库引擎活动所需的时间,例如连接数据和将数据转换为正确格式。prisma_datasource_queries_duration_histogram_ms
:所有执行的数据源查询的执行时间,单位为毫秒 (ms)。
您可以为您的指标数据添加全局标签来帮助您对指标进行分组和区分,例如按基础设施区域或服务器进行。
先决条件
要使用 Prisma Client 指标,您必须执行以下操作
1. 安装最新的 Prisma ORM 依赖项
使用 3.15.0
或更高版本的 prisma
和 @prisma/client
npm 包。
npm install prisma@latest --save-dev
npm install @prisma/client@latest --save
2. 在 Prisma Schema 文件中启用特性标志
在您的 schema.prisma
文件中的 generator
块中,启用 metrics
特性标志
generator client {
provider = "prisma-client-js"
previewFeatures = ["metrics"]
}
以 JSON 格式检索指标
当您以 JSON 格式检索指标时,可以直接使用返回的格式,或将它们发送到 StatsD 以可视化它们随时间的变化。
要以 JSON 格式检索指标,请将以下代码行添加到您的应用程序中
const metrics = await prisma.$metrics.json()
console.log(metrics)
这将返回如下指标
{
"counters": [
{
"key": "prisma_client_queries_total",
"labels": {},
"value": 0,
"description": "Total number of Prisma Client queries executed"
},
{
"key": "prisma_datasource_queries_total",
"labels": {},
"value": 0,
"description": "Total number of Datasource Queries executed"
},
{
"key": "prisma_pool_connections_closed_total",
"labels": {},
"value": 0,
"description": "Total number of Pool Connections closed"
},
{
"key": "prisma_pool_connections_opened_total",
"labels": {},
"value": 1,
"description": "Total number of Pool Connections opened"
}
...
],
"gauges": [
...
],
"histograms": [
...
]
}
展开查看完整输出
{
"counters": [
{
"key": "prisma_client_queries_total",
"labels": {},
"value": 2,
"description": "Total number of Prisma Client queries executed"
},
{
"key": "prisma_datasource_queries_total",
"labels": {},
"value": 5,
"description": "Total number of Datasource Queries executed"
},
{
"key": "prisma_pool_connections_open",
"labels": {},
"value": 1,
"description": "Number of currently open Pool Connections"
}
],
"gauges": [
{
"key": "prisma_client_queries_active",
"labels": {},
"value": 0,
"description": "Number of currently active Prisma Client queries"
},
{
"key": "prisma_client_queries_wait",
"labels": {},
"value": 0,
"description": "Number of Prisma Client queries currently waiting for a connection"
},
{
"key": "prisma_pool_connections_busy",
"labels": {},
"value": 0,
"description": "Number of currently busy Pool Connections (executing a datasource query)"
},
{
"key": "prisma_pool_connections_idle",
"labels": {},
"value": 21,
"description": "Number of currently unused Pool Connections (waiting for the next datasource query to run)"
},
{
"key": "prisma_pool_connections_open",
"labels": {},
"value": 1,
"description": "Number of currently open Pool Connections"
}
],
"histograms": [
{
"key": "prisma_client_queries_duration_histogram_ms",
"labels": {},
"value": {
"buckets": [
[0, 0],
[1, 0],
[5, 0],
[10, 1],
[50, 1],
[100, 0],
[500, 0],
[1000, 0],
[5000, 0],
[50000, 0]
],
"sum": 47.430541000000005,
"count": 2
},
"description": "Histogram of the duration of all executed Prisma Client queries in ms"
},
{
"key": "prisma_client_queries_wait_histogram_ms",
"labels": {},
"value": {
"buckets": [
[0, 0],
[1, 3],
[5, 0],
[10, 0],
[50, 0],
[100, 0],
[500, 0],
[1000, 0],
[5000, 0],
[50000, 0]
],
"sum": 0.0015830000000000002,
"count": 3
},
"description": "Histogram of the wait time of all Prisma Client Queries in ms"
},
{
"key": "prisma_datasource_queries_duration_histogram_ms",
"labels": {},
"value": {
"buckets": [
[0, 0],
[1, 0],
[5, 2],
[10, 2],
[50, 1],
[100, 0],
[500, 0],
[1000, 0],
[5000, 0],
[50000, 0]
],
"sum": 47.134498,
"count": 5
},
"description": "Histogram of the duration of all executed Datasource Queries in ms"
}
]
}
JSON 数据中的直方图
每个直方图“桶”有两个值。第一个是桶的上限,第二个是计数(落入该桶的数据值数量)。在下面的示例中,值在 11 到 20 之间的实例有两个,值在 21 到 30 之间的实例有五个
...
[20, 2],
[30, 5],
...
将 Prisma Client 指标与 StatsD 结合使用
您可以将 JSON 格式的指标发送到 StatsD 以可视化您的指标数据随时间的变化。
注意:您必须以一系列相对于上次检索指标时增加或减少的值的形式向 StatsD 提供计数器指标。然而,Prisma Client 的计数器指标返回的是绝对值。因此,您必须将计数器指标转换为一系列增加和减少的值,并将它们作为计量器数据发送到 StatsD。在下面的代码示例中,我们在 diffHistograms
中将计数器指标转换为增加和减少的计量器数据。
在下面的示例中,我们每 10 秒将指标发送到 StatsD。这个时间间隔与 StatsD 默认的 10 秒刷新率一致。
import StatsD from 'hot-shots'
let statsd = new StatsD({
port: 8125,
})
const diffMetrics = (metrics: Metric<MetricHistogram>[]) => {
return metrics.map((metric) => {
let prev = 0;
const diffBuckets = metric.value.buckets.map<MetricHistogramBucket>(
(values) => {
const [bucket, value] = values
const diff = value - prev
prev = value
return [bucket, diff]
}
)
metric.value.buckets = diffBuckets
return metric
})
}
let previousHistograms: Metric<MetricHistogram>[] = []
const statsdSender = async () => {
const metrics = await prisma.$metrics.json()
metrics.counters.forEach((counter: any) => {
statsd.gauge('prisma.' + counter.key, counter.value, (...res) => {})
});
metrics.gauges.forEach((counter: any) => {
statsd.gauge('prisma.' + counter.key, counter.value, (...res) => {})
})
if (!previousHistograms.length) {
previousHistograms = diffMetrics(metrics.histograms)
return
}
const diffHistograms = diffMetrics(metrics.histograms);
diffHistograms.forEach((diffHistogram, histogramIndex) => {
diffHistogram.value.buckets.forEach((values, bucketIndex) => {
const [bucket, count] = values
const [_, prev] =
previousHistograms[histogramIndex].value.buckets[bucketIndex]
const change = count - prev
for (let sendTimes = 0; sendTimes < change; sendTimes++) {
statsd.timing('prisma.' + diffHistograms.key, bucket)
}
})
})
previousHistograms = diffHistograms
}
setInterval(async () => await statsdSender(), 10000)
以 Prometheus 格式检索指标
当您以 Prometheus 格式检索 Prisma Client 指标时,可以直接使用返回的格式,或将它们发送到 Prometheus 指标系统以可视化它们随时间的变化。
要以 Prometheus 格式检索指标,请将以下代码行添加到您的应用程序中
const metrics = await prisma.$metrics.prometheus()
console.log(metrics)
这将返回如下指标
# HELP prisma_client_queries_total Total number of Prisma Client queries executed
# TYPE prisma_client_queries_total counter
prisma_client_queries_total 14
...
# HELP prisma_pool_connections_busy The number of active connections in use.
# TYPE prisma_pool_connections_busy gauge
prisma_pool_connections_busy 0
...
# HELP prisma_client_queries_wait_histogram_ms The wait time for a worker to get a connection.
# TYPE prisma_client_queries_wait_histogram_ms histogram
prisma_client_queries_wait_histogram_ms_bucket{le="0"} 0
prisma_client_queries_wait_histogram_ms_bucket{le="1"} 3
展开查看完整输出
# HELP query_total_operations
# TYPE query_total_operations counter
query_total_operations 2
# HELP prisma_datasource_queries_total
# TYPE prisma_datasource_queries_total counter
prisma_datasource_queries_total 28
# HELP prisma_pool_connections_closed_total Total number of Pool Connections closed
# TYPE prisma_pool_connections_closed_total counter
prisma_pool_connections_closed_total 0
# HELP prisma_pool_connections_opened_total Total number of Pool Connections opened
# TYPE prisma_pool_connections_opened_total counter
prisma_pool_connections_opened_total 0
# HELP prisma_client_queries_active Number of currently active Prisma Client queries
# TYPE prisma_client_queries_active gauge
prisma_client_queries_active 0
# HELP prisma_client_queries_wait Number of queries currently waiting for a connection
# TYPE prisma_client_queries_wait gauge
prisma_client_queries_wait 0
# HELP prisma_pool_connections_busy Number of currently busy Pool Connections (executing a datasource query)
# TYPE prisma_pool_connections_busy gauge
prisma_pool_connections_busy 0
# HELP prisma_pool_connections_idle Number of currently unused Pool Connections (waiting for the next pool query to run)
# TYPE prisma_pool_connections_idle gauge
prisma_pool_connections_idle 21
# HELP prisma_pool_connections_open Number of currently open Pool Connections
# TYPE prisma_pool_connections_open gauge
prisma_pool_connections_open 1
# HELP prisma_pool_connections_open Number of currently open Pool Connections (able to execute a datasource query)
# TYPE prisma_pool_connections_open gauge
prisma_pool_connections_open 0
# HELP prisma_client_queries_wait_histogram_ms The wait time for a worker to get a connection.
# TYPE prisma_client_queries_wait_histogram_ms histogram
prisma_client_queries_wait_histogram_ms_bucket{le="0"} 0
prisma_client_queries_wait_histogram_ms_bucket{le="1"} 3
prisma_client_queries_wait_histogram_ms_bucket{le="5"} 3
prisma_client_queries_wait_histogram_ms_bucket{le="10"} 3
prisma_client_queries_wait_histogram_ms_bucket{le="50"} 3
prisma_client_queries_wait_histogram_ms_bucket{le="100"} 3
prisma_client_queries_wait_histogram_ms_bucket{le="500"} 3
prisma_client_queries_wait_histogram_ms_bucket{le="1000"} 3
prisma_client_queries_wait_histogram_ms_bucket{le="5000"} 3
prisma_client_queries_wait_histogram_ms_bucket{le="50000"} 3
prisma_client_queries_wait_histogram_ms_bucket{le="+Inf"} 3
prisma_client_queries_wait_histogram_ms_sum 0.023208
prisma_client_queries_wait_histogram_ms_count 3
# HELP prisma_client_queries_duration_histogram_ms Histogram of the duration of all executed Prisma Client queries in ms
# TYPE prisma_client_queries_duration_histogram_ms histogram
prisma_client_queries_duration_histogram_ms_bucket{le="0"} 0
prisma_client_queries_duration_histogram_ms_bucket{le="1"} 1
prisma_client_queries_duration_histogram_ms_bucket{le="5"} 2
prisma_client_queries_duration_histogram_ms_bucket{le="10"} 2
prisma_client_queries_duration_histogram_ms_bucket{le="50"} 2
prisma_client_queries_duration_histogram_ms_bucket{le="100"} 2
prisma_client_queries_duration_histogram_ms_bucket{le="500"} 2
prisma_client_queries_duration_histogram_ms_bucket{le="1000"} 2
prisma_client_queries_duration_histogram_ms_bucket{le="5000"} 2
prisma_client_queries_duration_histogram_ms_bucket{le="50000"} 2
prisma_client_queries_duration_histogram_ms_bucket{le="+Inf"} 2
prisma_client_queries_duration_histogram_ms_sum 3.197624
prisma_client_queries_duration_histogram_ms_count 2
# HELP prisma_datasource_queries_duration_histogram_ms Histogram of the duration of all executed Datasource Queries in ms
# TYPE prisma_datasource_queries_duration_histogram_ms histogram
prisma_datasource_queries_duration_histogram_ms_bucket{le="0"} 0
prisma_datasource_queries_duration_histogram_ms_bucket{le="1"} 5
prisma_datasource_queries_duration_histogram_ms_bucket{le="5"} 5
prisma_datasource_queries_duration_histogram_ms_bucket{le="10"} 5
prisma_datasource_queries_duration_histogram_ms_bucket{le="50"} 5
prisma_datasource_queries_duration_histogram_ms_bucket{le="100"} 5
prisma_datasource_queries_duration_histogram_ms_bucket{le="500"} 5
prisma_datasource_queries_duration_histogram_ms_bucket{le="1000"} 5
prisma_datasource_queries_duration_histogram_ms_bucket{le="5000"} 5
prisma_datasource_queries_duration_histogram_ms_bucket{le="50000"} 5
prisma_datasource_queries_duration_histogram_ms_bucket{le="+Inf"} 5
prisma_datasource_queries_duration_histogram_ms_sum 1.8407059999999997
prisma_datasource_queries_duration_histogram_ms_count 5
类型为 histogram
的指标以 Prometheus 格式暴露三种不同类别的值
-
观测桶的多个累积计数器。这些计数器以后缀
_bucket{le="<upper inclusive bound>"}
结尾。例如,prisma_datasource_queries_duration_histogram_ms
有一个暴露为prisma_datasource_queries_duration_histogram_ms_bucket{le="1"}
的计数器。当观测到的值小于或等于桶的上限(包含)时,Prisma Client 指标会将该桶的计数增加 1。假设您有上限(包含)分别为 0、1、5、10 和 50 的桶。如果观测到的值为 5,则 Prisma Client 指标会从第三个桶开始增加计数,因为该值大于 0 和 1,但小于或等于 5、10 和 50。
-
所有观测值的单个总和。此计数器以后缀
_sum
结尾。例如,prisma_datasource_queries_duration_histogram_ms
的总和暴露为prisma_datasource_queries_duration_histogram_ms_sum
。 -
观测到的事件数量的计数。此计数器以后缀
_count
结尾。例如,prisma_datasource_queries_duration_histogram_ms
事件的总计数暴露为prisma_datasource_queries_duration_histogram_ms_count
。
更多信息,请阅读 Prometheus 文档中关于指标类型的内容。
将 Prisma Client 指标与 Prometheus 指标系统结合使用
在大多数情况下,Prometheus 必须抓取一个端点来检索指标。以下示例展示了如何使用 Express.js
发送数据。
import { PrismaClient } from '@prisma/client'
import express, { Request, Response } from 'express'
const app = express()
const port = 4000
const prisma = new PrismaClient()
app.get('/metrics', async (_req, res: Response) => {
const metrics = await prisma.$metrics.prometheus()
res.end(metrics)
})
app.listen(port, () => {
console.log(`Example app listening on port ${port}`)
})
以下示例展示了如何将 Prisma Client 指标与其他也通过 REST API 端点结合 Express.js
提供的 Prometheus 客户端库结合使用。
import { PrismaClient } from '@prisma/client'
import express, { Request, Response } from 'express'
import prom from 'prom-client'
const app = express()
const port = 4000
const prisma = new PrismaClient()
const register = new prom.Registry()
prom.collectDefaultMetrics({ register })
app.get('/metrics', async (_req, res: Response) => {
const prismaMetrics = await prisma.$metrics.prometheus()
const appMetrics = await register.metrics()
res.end(prismaMetrics + appMetrics)
})
app.listen(port, () => {
console.log(`Example app listening on port ${port}`)
})
全局标签
您可以为您的指标添加全局标签,以帮助您对指标进行分组和区分。每个 Prisma Client 实例都会将其生成的指标添加这些标签。例如,您可以使用类似于 { server: us_server1', 'app_version': 'one' }
的标签按基础设施区域或服务器对指标进行分组。
全局标签适用于 JSON 和 Prometheus 格式的指标。
例如,要为 JSON 格式的指标添加全局标签,请将以下代码添加到您的应用程序中
const metrics = prisma.$metrics.json({
globalLabels: { server: 'us_server1', app_version: 'one' },
})
console.log(metrics)
这将返回如下格式的信息
{
"counters": [
{
"key": "query_total_operations",
"labels": { "server": "us_server1", "app_version": "one" },
"value": 0,
"description": "The total number of operations executed"
},
{
"key": "prisma_datasource_queries_total",
"labels": { "server": "us_server1", "app_version": "one" },
"value": 0,
"description": "The total number of queries executed"
},
...
],
"gauges": [
...
],
"histograms": [
...
]
}