指标
Prisma Client 指标为您提供关于 Prisma Client 如何与您的数据库交互的详细洞察。您可以使用此洞察来帮助诊断应用程序的性能问题。
如果您想要更详细地了解 Prisma Client 的性能,例如在单个操作级别,请参阅追踪。
关于指标
您可以导出 JSON 或 Prometheus 格式的指标,并在控制台日志中查看它们,或者将它们集成到外部指标系统,例如 StatsD 或 Prometheus。如果您将它们集成到外部指标系统中,那么您可以随时间查看指标数据。例如,您可以使用指标来帮助诊断应用程序的空闲和活动连接数如何变化。
Prisma Client 提供以下指标
-
计数器(总是增加)
prisma_client_queries_total
:执行的 Prisma Client 查询总数。prisma_datasource_queries_total
:执行的数据源查询总数(关系数据库中的 SQL 查询,以及 MongoDB 中的命令)。prisma_datasource_queries_total
返回的值可能大于prisma_client_queries_total
,因为某些 Prisma Client 操作会创建多个查询。
prisma_pool_connections_closed_total
:关闭的连接池连接总数。prisma_pool_connections_opened_total
:当前打开的连接池连接数。
-
仪表(可以增加或减少)
prisma_client_queries_active
:当前活跃的 Prisma Client 查询数。prisma_client_queries_wait
:当前等待连接的 Prisma Client 查询数,因为所有连接都在使用中。prisma_pool_connections_busy
:当前繁忙的连接池连接数。这些连接池连接当前正在执行数据源查询。prisma_pool_connections_idle
:当前未被使用的连接池连接数。这些连接池连接正在等待下一个数据源查询运行。prisma_pool_connections_open
:打开的连接池连接数。
-
直方图(指标数据被分成一系列值;我们将集合中的每个容器称为“bucket”)
prisma_client_queries_wait_histogram_ms
:所有 Prisma Client 查询等待连接池连接的时间,单位为毫秒。prisma_client_queries_duration_histogram_ms
:所有已执行 Prisma Client 查询的执行时间,单位为毫秒。这包括执行所有数据库查询以及执行所有数据库引擎活动(例如连接数据和将数据转换为正确格式)所花费的时间。prisma_datasource_queries_duration_histogram_ms
:所有已执行数据源查询的执行时间,单位为毫秒。
您可以向您的指标数据添加全局标签,以帮助您对指标进行分组和分隔,例如按基础设施区域或服务器。
先决条件
要使用 Prisma Client 指标,您必须执行以下操作
1. 安装最新的 Prisma ORM 依赖项
使用版本 3.15.0
或更高版本的 prisma
和 @prisma/client
npm 包。
npm install prisma@latest --save-dev
npm install @prisma/client@latest --save
2. 在 Prisma schema 文件中启用功能标志
在您的 schema.prisma
文件的 generator
代码块中,启用 metrics
功能标志
generator client {
provider = "prisma-client-js"
previewFeatures = ["metrics"]
}
以 JSON 格式检索指标
当您以 JSON 格式检索指标时,您可以使用返回的格式,或者将它们发送到 StatSD以可视化它们随时间的变化。
要以 JSON 格式检索指标,请将以下行添加到您的应用程序代码中
const metrics = await prisma.$metrics.json()
console.log(metrics)
这将返回如下指标
{
"counters": [
{
"key": "prisma_client_queries_total",
"labels": {},
"value": 0,
"description": "Total number of Prisma Client queries executed"
},
{
"key": "prisma_datasource_queries_total",
"labels": {},
"value": 0,
"description": "Total number of Datasource Queries executed"
},
{
"key": "prisma_pool_connections_closed_total",
"labels": {},
"value": 0,
"description": "Total number of Pool Connections closed"
},
{
"key": "prisma_pool_connections_opened_total",
"labels": {},
"value": 1,
"description": "Total number of Pool Connections opened"
}
...
],
"gauges": [
...
],
"histograms": [
...
]
}
展开以查看完整输出
{
"counters": [
{
"key": "prisma_client_queries_total",
"labels": {},
"value": 2,
"description": "Total number of Prisma Client queries executed"
},
{
"key": "prisma_datasource_queries_total",
"labels": {},
"value": 5,
"description": "Total number of Datasource Queries executed"
},
{
"key": "prisma_pool_connections_open",
"labels": {},
"value": 1,
"description": "Number of currently open Pool Connections"
}
],
"gauges": [
{
"key": "prisma_client_queries_active",
"labels": {},
"value": 0,
"description": "Number of currently active Prisma Client queries"
},
{
"key": "prisma_client_queries_wait",
"labels": {},
"value": 0,
"description": "Number of Prisma Client queries currently waiting for a connection"
},
{
"key": "prisma_pool_connections_busy",
"labels": {},
"value": 0,
"description": "Number of currently busy Pool Connections (executing a datasource query)"
},
{
"key": "prisma_pool_connections_idle",
"labels": {},
"value": 21,
"description": "Number of currently unused Pool Connections (waiting for the next datasource query to run)"
},
{
"key": "prisma_pool_connections_open",
"labels": {},
"value": 1,
"description": "Number of currently open Pool Connections"
}
],
"histograms": [
{
"key": "prisma_client_queries_duration_histogram_ms",
"labels": {},
"value": {
"buckets": [
[0, 0],
[1, 0],
[5, 0],
[10, 1],
[50, 1],
[100, 0],
[500, 0],
[1000, 0],
[5000, 0],
[50000, 0]
],
"sum": 47.430541000000005,
"count": 2
},
"description": "Histogram of the duration of all executed Prisma Client queries in ms"
},
{
"key": "prisma_client_queries_wait_histogram_ms",
"labels": {},
"value": {
"buckets": [
[0, 0],
[1, 3],
[5, 0],
[10, 0],
[50, 0],
[100, 0],
[500, 0],
[1000, 0],
[5000, 0],
[50000, 0]
],
"sum": 0.0015830000000000002,
"count": 3
},
"description": "Histogram of the wait time of all Prisma Client Queries in ms"
},
{
"key": "prisma_datasource_queries_duration_histogram_ms",
"labels": {},
"value": {
"buckets": [
[0, 0],
[1, 0],
[5, 2],
[10, 2],
[50, 1],
[100, 0],
[500, 0],
[1000, 0],
[5000, 0],
[50000, 0]
],
"sum": 47.134498,
"count": 5
},
"description": "Histogram of the duration of all executed Datasource Queries in ms"
}
]
}
JSON 数据中的直方图
每个直方图“bucket”都有两个值。第一个是 bucket 的上限,第二个是计数(落入该 bucket 的数据值的数量)。在以下示例中,有 2 个值在 11 到 20 之间,以及 5 个值在 21 到 30 之间
...
[20, 2],
[30, 5],
...
将 Prisma Client 指标与 StatsD 一起使用
您可以将 JSON 格式的指标发送到 StatsD 以可视化您的指标数据随时间的变化。
注意:您必须将计数器指标作为一系列值提供给 StatsD,这些值是从先前检索的指标中递增或递减的。但是,Prisma Client 的计数器指标返回绝对值。因此,您必须将计数器指标转换为一系列递增和递减的值,并将它们作为仪表数据发送到 StatsD。在下面的代码示例中,我们将计数器指标转换为 diffHistograms
中的递增和递减仪表数据。
在以下示例中,我们每 10 秒将指标发送到 StatsD。此时间安排与 StatsD 的默认 10 秒刷新率一致。
import StatsD from 'hot-shots'
let statsd = new StatsD({
port: 8125,
})
const diffMetrics = (metrics: Metric<MetricHistogram>[]) => {
return metrics.map((metric) => {
let prev = 0;
const diffBuckets = metric.value.buckets.map<MetricHistogramBucket>(
(values) => {
const [bucket, value] = values
const diff = value - prev
prev = value
return [bucket, diff]
}
)
metric.value.buckets = diffBuckets
return metric
})
}
let previousHistograms: Metric<MetricHistogram>[] = []
const statsdSender = async () => {
const metrics = await prisma.$metrics.json()
metrics.counters.forEach((counter: any) => {
statsd.gauge('prisma.' + counter.key, counter.value, (...res) => {})
});
metrics.gauges.forEach((counter: any) => {
statsd.gauge('prisma.' + counter.key, counter.value, (...res) => {})
})
if (!previousHistograms.length) {
previousHistograms = diffMetrics(metrics.histograms)
return
}
const diffHistograms = diffMetrics(metrics.histograms);
diffHistograms.forEach((diffHistogram, histogramIndex) => {
diffHistogram.value.buckets.forEach((values, bucketIndex) => {
const [bucket, count] = values
const [_, prev] =
previousHistograms[histogramIndex].value.buckets[bucketIndex]
const change = count - prev
for (let sendTimes = 0; sendTimes < change; sendTimes++) {
statsd.timing('prisma.' + diffHistograms.key, bucket)
}
})
})
previousHistograms = diffHistograms
}
setInterval(async () => await statsdSender(), 10000)
以 Prometheus 格式检索指标
当您以 Prometheus 格式检索 Prisma Client 指标时,您可以使用返回的格式,或者将它们发送到 Prometheus 指标系统以可视化它们随时间的变化。
要以 Prometheus 格式检索指标,请将以下行添加到您的应用程序代码中
const metrics = await prisma.$metrics.prometheus()
console.log(metrics)
这将返回如下指标
# HELP prisma_client_queries_total Total number of Prisma Client queries executed
# TYPE prisma_client_queries_total counter
prisma_client_queries_total 14
...
# HELP prisma_pool_connections_busy The number of active connections in use.
# TYPE prisma_pool_connections_busy gauge
prisma_pool_connections_busy 0
...
# HELP prisma_client_queries_wait_histogram_ms The wait time for a worker to get a connection.
# TYPE prisma_client_queries_wait_histogram_ms histogram
prisma_client_queries_wait_histogram_ms_bucket{le="0"} 0
prisma_client_queries_wait_histogram_ms_bucket{le="1"} 3
展开以查看完整输出
# HELP query_total_operations
# TYPE query_total_operations counter
query_total_operations 2
# HELP prisma_datasource_queries_total
# TYPE prisma_datasource_queries_total counter
prisma_datasource_queries_total 28
# HELP prisma_pool_connections_closed_total Total number of Pool Connections closed
# TYPE prisma_pool_connections_closed_total counter
prisma_pool_connections_closed_total 0
# HELP prisma_pool_connections_opened_total Total number of Pool Connections opened
# TYPE prisma_pool_connections_opened_total counter
prisma_pool_connections_opened_total 0
# HELP prisma_client_queries_active Number of currently active Prisma Client queries
# TYPE prisma_client_queries_active gauge
prisma_client_queries_active 0
# HELP prisma_client_queries_wait Number of queries currently waiting for a connection
# TYPE prisma_client_queries_wait gauge
prisma_client_queries_wait 0
# HELP prisma_pool_connections_busy Number of currently busy Pool Connections (executing a datasource query)
# TYPE prisma_pool_connections_busy gauge
prisma_pool_connections_busy 0
# HELP prisma_pool_connections_idle Number of currently unused Pool Connections (waiting for the next pool query to run)
# TYPE prisma_pool_connections_idle gauge
prisma_pool_connections_idle 21
# HELP prisma_pool_connections_open Number of currently open Pool Connections
# TYPE prisma_pool_connections_open gauge
prisma_pool_connections_open 1
# HELP prisma_pool_connections_open Number of currently open Pool Connections (able to execute a datasource query)
# TYPE prisma_pool_connections_open gauge
prisma_pool_connections_open 0
# HELP prisma_client_queries_wait_histogram_ms The wait time for a worker to get a connection.
# TYPE prisma_client_queries_wait_histogram_ms histogram
prisma_client_queries_wait_histogram_ms_bucket{le="0"} 0
prisma_client_queries_wait_histogram_ms_bucket{le="1"} 3
prisma_client_queries_wait_histogram_ms_bucket{le="5"} 3
prisma_client_queries_wait_histogram_ms_bucket{le="10"} 3
prisma_client_queries_wait_histogram_ms_bucket{le="50"} 3
prisma_client_queries_wait_histogram_ms_bucket{le="100"} 3
prisma_client_queries_wait_histogram_ms_bucket{le="500"} 3
prisma_client_queries_wait_histogram_ms_bucket{le="1000"} 3
prisma_client_queries_wait_histogram_ms_bucket{le="5000"} 3
prisma_client_queries_wait_histogram_ms_bucket{le="50000"} 3
prisma_client_queries_wait_histogram_ms_bucket{le="+Inf"} 3
prisma_client_queries_wait_histogram_ms_sum 0.023208
prisma_client_queries_wait_histogram_ms_count 3
# HELP prisma_client_queries_duration_histogram_ms Histogram of the duration of all executed Prisma Client queries in ms
# TYPE prisma_client_queries_duration_histogram_ms histogram
prisma_client_queries_duration_histogram_ms_bucket{le="0"} 0
prisma_client_queries_duration_histogram_ms_bucket{le="1"} 1
prisma_client_queries_duration_histogram_ms_bucket{le="5"} 2
prisma_client_queries_duration_histogram_ms_bucket{le="10"} 2
prisma_client_queries_duration_histogram_ms_bucket{le="50"} 2
prisma_client_queries_duration_histogram_ms_bucket{le="100"} 2
prisma_client_queries_duration_histogram_ms_bucket{le="500"} 2
prisma_client_queries_duration_histogram_ms_bucket{le="1000"} 2
prisma_client_queries_duration_histogram_ms_bucket{le="5000"} 2
prisma_client_queries_duration_histogram_ms_bucket{le="50000"} 2
prisma_client_queries_duration_histogram_ms_bucket{le="+Inf"} 2
prisma_client_queries_duration_histogram_ms_sum 3.197624
prisma_client_queries_duration_histogram_ms_count 2
# HELP prisma_datasource_queries_duration_histogram_ms Histogram of the duration of all executed Datasource Queries in ms
# TYPE prisma_datasource_queries_duration_histogram_ms histogram
prisma_datasource_queries_duration_histogram_ms_bucket{le="0"} 0
prisma_datasource_queries_duration_histogram_ms_bucket{le="1"} 5
prisma_datasource_queries_duration_histogram_ms_bucket{le="5"} 5
prisma_datasource_queries_duration_histogram_ms_bucket{le="10"} 5
prisma_datasource_queries_duration_histogram_ms_bucket{le="50"} 5
prisma_datasource_queries_duration_histogram_ms_bucket{le="100"} 5
prisma_datasource_queries_duration_histogram_ms_bucket{le="500"} 5
prisma_datasource_queries_duration_histogram_ms_bucket{le="1000"} 5
prisma_datasource_queries_duration_histogram_ms_bucket{le="5000"} 5
prisma_datasource_queries_duration_histogram_ms_bucket{le="50000"} 5
prisma_datasource_queries_duration_histogram_ms_bucket{le="+Inf"} 5
prisma_datasource_queries_duration_histogram_ms_sum 1.8407059999999997
prisma_datasource_queries_duration_histogram_ms_count 5
histogram
类型的指标在 Prometheus 格式中公开三种不同类型的值
-
多个用于观察 bucket 的累积计数器。这些计数器带有后缀
_bucket{le="<upper inclusive bound>"}
。例如,prisma_datasource_queries_duration_histogram_ms
的计数器公开为prisma_datasource_queries_duration_histogram_ms_bucket{le="1"}
当观察到的值小于或等于 bucket 的上限(包含上限)时,Prisma Client 指标会将该 bucket 递增 1。假设您的 bucket 的上限(包含上限)分别为 0、1、5、10 和 50。如果观察到的值为 5,则 Prisma Client 指标会递增第三个 bucket 及以后的 bucket,因为该值大于 0 和大于 1,但小于或等于 5、10 和 50。
-
所有观察到的值的单个总和。此计数器带有后缀
_sum
。例如,prisma_datasource_queries_duration_histogram_ms
的总和公开为prisma_datasource_queries_duration_histogram_ms_sum
。 -
已观察到的事件数的计数。此计数器带有后缀
_count
。例如,prisma_datasource_queries_duration_histogram_ms
事件的总计数公开为prisma_datasource_queries_duration_histogram_ms_count
。
有关更多信息,请阅读 Prometheus 文档中关于指标类型的内容。
将 Prisma Client 指标与 Prometheus 指标系统一起使用
在大多数情况下,Prometheus 必须抓取端点才能检索指标。以下示例展示了如何使用 Express.js
发送数据
import { PrismaClient } from '@prisma/client'
import express, { Request, Response } from 'express'
const app = express()
const port = 4000
const prisma = new PrismaClient()
app.get('/metrics', async (_req, res: Response) => {
const metrics = await prisma.$metrics.prometheus()
res.end(metrics)
})
app.listen(port, () => {
console.log(`Example app listening on port ${port}`)
})
以下示例展示了如何将 Prisma Client 指标与其他 Prometheus 客户端库组合使用,这些库也与 Express.js
结合使用 REST API 端点提供服务
import { PrismaClient } from '@prisma/client'
import express, { Request, Response } from 'express'
import prom from 'prom-client'
const app = express()
const port = 4000
const prisma = new PrismaClient()
const register = new prom.Registry()
prom.collectDefaultMetrics({ register })
app.get('/metrics', async (_req, res: Response) => {
const prismaMetrics = await prisma.$metrics.prometheus()
const appMetrics = await register.metrics()
res.end(prismaMetrics + appMetrics)
})
app.listen(port, () => {
console.log(`Example app listening on port ${port}`)
})
全局标签
您可以向指标添加全局标签,以帮助您对指标进行分组和分隔。Prisma Client 的每个实例都会将这些标签添加到它生成的指标中。例如,您可以使用类似 { server: us_server1', 'app_version': 'one' }
的标签按基础设施区域或服务器对指标进行分组。
全局标签适用于 JSON 和 Prometheus 格式的指标。
例如,要向 JSON 格式的指标添加全局标签,请将以下代码添加到您的应用程序中
const metrics = prisma.$metrics.json({
globalLabels: { server: 'us_server1', app_version: 'one' },
})
console.log(metrics)
这将返回以下格式的信息
{
"counters": [
{
"key": "query_total_operations",
"labels": { "server": "us_server1", "app_version": "one" },
"value": 0,
"description": "The total number of operations executed"
},
{
"key": "prisma_datasource_queries_total",
"labels": { "server": "us_server1", "app_version": "one" },
"value": 0,
"description": "The total number of queries executed"
},
...
],
"gauges": [
...
],
"histograms": [
...
]
}